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Abstract: The use of unmanned aerial vehicle (UAV) applications has grown rapidly over the past
decade with the introduction of low-cost microelectromechanical system (MEMS)-based sensors that
measure angular velocity, gravity, and magnetic field, which are important for an object orientation
determination. However, the use of low-cost sensors has also been limited because their readings
are easily distorted by unwanted internal and/or external noise signals such as environmental
magnetic disturbance, which lead to errors in attitude and heading estimation results. In an extended
Kalman filter (EKF) process, this study proposes a method for mitigating the effect of magnetic
disturbance on attitude determination by using a double quaternion parameters for representation of
orientation states, which decouples the magnetometer from attitude computation. Additionally, an
online measurement error covariance matrix tuning system was implemented to reject the impact of
magnetic disturbance on the heading estimation. Simulation and experimental tests were conducted
to verify the performance of the proposed methods in resolving the magnetic noise effect on attitude
and heading. The results showed that the proposed method performed better than complimentary,
gradient descent, and single quaternion-based EKF.

Keywords: attitude; heading; extended Kalman filter; estimation; IMU sensor; magnetic disturbance
rejection

1. Introduction

The attitude and heading reference system (AHRS) plays a significant role in navi-
gation applications. Vehicles with any degree of navigation autonomy require an AHRS
to continuously monitor their orientations with respect to a specific reference system [1].
One of the most important applications of an AHRS is the flight control of unmanned
aerial vehicles (UAVs). Evidently, UAVs’ global market size has rapidly increased over the
last decade owing to their intriguing applications in entertainment, transportation, rescue
operations, navigation, military, and other fields. Thus, there is a growing need for an
accurate and dependable AHRS.

An AHRS consists of MEMS-based tri-axis sensors, including gyroscopes, accelerome-
ters, and magnetometers, to collect important information about the angular rotation speed,
gravity, and Earth’s magnetic field, respectively. The AHRS can potentially determine the
3D orientation of a sensor device by integrating the gyroscope output from known initial
conditions with gravity and magnetic field measurements from the accelerometer and
magnetometer [2]. However, a precise calculation of sensor orientation is still an onerous
task, and the effect of magnetic interference on the magnetometer is one of the barriers [3].
Several researchers have devised algorithms for calculating sensor orientation using low-
cost microelectromechanical system (MEMS) sensors. One of the most well-known and
preferred algorithms for attitude estimation is the Kalman filter. For instance, a two-step
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geometrically intuitive correction algorithm is combined with a quaternion-based Kalman
filter to estimate attitude in real time [4]. Similarly, a quaternion-based Kalman filter with
an adaptive-step gradient descent algorithm was presented in [5], with the goal of offsetting
the effect of magnetic distortion. Both studies mentioned earlier focused on reducing mag-
netic disturbances to improve attitude accuracy by decoupling the attitude and heading
calculation. Other studies, such as [6], also attempted to overcome the extended Kalman
filter (EKF) estimation accuracy problem by varying the measurement error covariance
matrix using a fuzzy-adaptive method. In other words, the device vibration, external
acceleration, and magnetic disturbance were considered to make a fuzzy judgment about
the selection of the measurement error covariance. In addition, the problem of finding
the best measurement error covariance based on sensor data history was addressed using
an analytical technique that included transform-based and learning-based approaches
for determining the optimal measurement error covariance matrix [7]. In another study,
Fan et al. [8] performed a thorough evaluation of various approaches used by different
researchers to overcome the challenges associated with the MEMS sensors mentioned
earlier, and they presented a comparative performance assessment of the approaches in
readily understandable way to spot the problems easily. In particular, the study provided
a performance comparison between attitude estimation and magnetic disturbance de-
coupling, magnetic disturbance compensation, online gyroscope bias compensation, and
sensor fusion algorithms.

Poulose et al. [9] addressed five main algorithms in depth: linear Kalman filter (LKF),
extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filters (PF), and
complementary filters (CF). Furthermore, the mathematical formulation of each algorithm
was explained well, and the algorithm performances were compared. However, aside from
pointing out the output differences between them, the influence of magnetic interference
on attitude estimation and the adequacy of the results obtained by each algorithm were
not specified clearly. To boost the attitude estimation accuracy, Farhangian et al. [10]
proposed an EKF-based error prediction and PI controller system. The algorithm in this
study predicts the attitude error by considering the measurement data profile of the
gyroscope and uses that error as feedback for the PI controller to constructively change the
determined attitude value, but the improvement is not sufficient. Youn [11] also presented
a magnetometer error-tolerant method for UAV applications. This study presented a
magnetometer-free AHRS during magnetometer failure. The effort put forward in this
research to address the problem caused by magnetometer is commendable. However, in
the absence of environmental magnetic disturbances or tamper with the magnetometer, no
solution avoided the impact of an imprecise magnetometer on attitude estimation.

Despite the findings of the previously mentioned studies, some problems remain. One
of the most serious concerns in the UAV industry is the lack of accurate and reliable infor-
mation about attitude and heading, especially in environments where external magnetic
fields may present such as in warehouses, tunnels and other indoor environments. In such
an environment, the magnetometer’s reading of the Earth’s magnetic field is tempered by
unexpected magnetic fields in its surroundings [12–14]. Therefore, this study proposes
a method for avoiding the effects of magnetic disturbance on attitude estimation using
double quaternion parameters estimation techniques that decouple attitude and heading
calculations. In addition, the conditional magnetic disturbance due to the dynamic en-
vironment is mitigated by applying magnetic disturbance detection methods and using
alternative strategies in the disturbance state. In addition, other related algorithms are
thoroughly evaluated and tested for verification. The algorithm was also verified with
experimentation and computer simulation.

2. Quaternion-Based Attitude and Heading Representation

Different methods are used to represent a rigid body orientation in three dimensions
(3D). Euler used three sets of angles (roll, pitch, and yaw) to describe the definite rotation
of an object frame, which is called the body frame, with respect to a given reference frame
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(inertial frame). Unlike the Euler representation, four parameters are used in quaternion
representation for 3D rotation quantification, with the constraint that the sum of squares
for each parameter equals unity [15–17].

The rotated object final orientation is determined based on Euler angles or quaternion
parameters, as given in Equations (2) and (3). Let V be a vector pointing to the initial front
direction of the object and let the final object orientation be represented by V′ as shown
in Figure 1. Then, V′ is computed from V and the Euler rotation angles, as indicated in
Equation (2).

V =

v1
v2
v3

, V′ =

v′1
v′2
v′3

 (1)

V′ =

 cosψcosθ cosθsinψ −sinθ
cosψsinφsinθ − cosφsinψ cosφcosψ + sinφsinψsinθ cosθsinφ
sinφsinψ + cosφcosψsinθ cosφsinψsinθ − cosψsinφ cosφcosθ

v1
v2
v3

 (2)

where φ, θ and ψ represent the Euler rotation angles roll, pitch, and yaw, respectively, for
the rotation sequence XYZ. Similarly, V′ is obtained from the quaternion parameters and V,
as shown in Equation (3).

V′ =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

v1
v2
v3

 (3)

where q =
[
q0 q1 q2 q3

]
is the quaternion representation of rotation.

Figure 1. Illustration of Euler and quaternion rotations.

2.1. Attitude and Heading Identification from Accelerometer and Magnetometer Measurements
2.1.1. Finding Euler Angles

The strength of the gravitational field measured by the accelerometer along its vertical
and horizontal axes can help determine the vehicle’s roll and pitch angles if the accelerom-
eter’s and the vehicle’s axes are aligned in the same direction. The direction of gravity
is always vertically downward, and its magnitude is constant. Therefore, depending on
the current orientation of the sensor, the component of the gravitational field detected
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along the sensor axes varies, and this change is used as input to calculate the roll and pitch
angles [4,12]. The acceleration components detected by the accelerometer were related to
the orientation angles in Equation (4).ax

ay
az

 =

 cosψcosθ cosθsinψ −sinθ
cosψsinφsinθ − cosφsinψ cosφcosψ + sinφsinψsinθ cosθsinφ
sinφsinψ + cosφcosψsinθ cosφsinψsinθ − cosψsinφ cosφcosθ

(g− ar) (4)

If there is no linear acceleration (i.e., ar ≈ 0), then the normalized gravity vector is
substituted by

[
0 0 1

]T :

1
aN

ax
ay
az

 =

 cosψcosθ cosθsinψ −sinθ
cosψsinφsinθ − cosφsinψ cosφcosψ + sinφsinψsinθ cosθsinφ
sinφsinψ + cosφcosψsinθ cosφsinψsinθ − cosψsinφ cosφcosθ

0
0
1


aN =

√
a2

x + a2
y + a2

z

(5)

Simplifying:

1
aN

ax
ay
az

 =

 −sinθ
cosθsinφ
cosφcosθ

 (6)

Solving for φ and θ:

φ = tan−1
(

ay
az

)
θ = tan−1

(
−ax√
a2

y+a2
z

) (7)

After determining the attitude angles, the heading angle was computed from the
attitude and magnetometer readings [18]. The magnetometer measures the ambient mag-
netic field, which is a composition of the Earth’s geomagnetic field and local magnetic
disturbance. We used H to represent the vector of the geomagnetic field in the north-east-
down (NED) frame. Its magnitude is H0, and its direction deviates from geographic north
by the declination angle α and from the surface of the Earth by inclination angle β. It is
mathematically described in Equation (8).

H =

Hx
Hy
Hz

 = H0 ∗

cosβcosα
cosβsinα

sinβ

 (8)

The value of declination angle α and inclination angle β depend on geographical
location. Assuming that sensor frame is rotated relative to the NED frame by the three
Euler angles (φ, θ, ψ), one can express the geomagnetic field vector in the sensor frame as
shown in Equation (9).mx

my
mz

 =

 cosψcosθ cosθsinψ −sinθ
cosψsinφsinθ − cosφsinψ cosφcosψ + sinφsinψsinθ cosθsinφ
sinφsinψ + cosφcosψsinθ cosφsinψsinθ − cosψsinφ cosφcosθ

Hx
Hy
Hz

 (9)

Substituting Equation (8) into Equation (9), then normalizing and solving for the
heading angle ψ, mN

x
mN

y
mN

z

 =
1

H0

mx
my
mz


ψ = tan−1

(
sinφ∗mN

z −cosφ∗mN
y

cosθ∗mN
x +sinθsinφ∗mN

y +sinθcosφ∗mN
z

)
+ α

(10)
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where mN
x , mN

y , and mN
z represent the normalized magnetometer readings of the magnetic

field with respect to the sensor frame, respectively.

2.1.2. Finding Quaternion Parameters

The Earth gravitational field vector measured with respect to the sensor frame and
NED frame is related to the vector rotation formula presented in Equation (3). The gravity
vector in the NED frame is normalized for simplicity, that is, g =

[
0 0 1

]T .ax
ay
az

 =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

0
0
1

 (11)

Equation (11) has infinite solutions because the number of unknown variables is
greater than the number of equations. However, the gravitational vector does not provide
any information about rotation around the Z-axis. Therefore, the quaternion parameter
q3 can be set to zero. Consequently, finding a finite solution for Equation (11) becomes
possible. After a mathematical derivation, the quaternion parameters are represented in
terms of the acceleration measured by the accelerometer. The derivation was taken from [1].

qatt =


[√

az+1
2 − ay√

2(az+1)
ax√

2(az+1)
0
]T

, az ≥ 0[
− ay√

2(1−az)

√
1−az

2 0 ax√
2(1−az)

]T
, az < 0

(12)

Similarly, the equation that relates the heading quaternion representation to the
magnetometer readings can be derived. It is clear that the heading component of the
orientation quaternion parameter is independent of any rotation about the X- and Y-
axes. Therefore, the quaternion parameters representing the axis of the rotation vector
should be constrained only in the vertical direction. As a result, quaternion qhdg has the
following form:

qhdg =
[
q0 0 0 q3

]T (13)

The magnetic field measured by the magnetometer can be mapped to the horizontal
and vertical components of the Earth’s magnetic field using Equation (14)mx

my
mz

 =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)
2(q1q2 − q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

Hx
Hy
Hz


RT(qhdg)

mx
my
mz

 =

Bh
0

mz

, when the x-axis of the sensor is aligned to the north

(14)

where Bh = (H2
x + H2

y). The complete solution that avoids singularity is presented next.

qhdg =


[√

Bh+mx
√

Bh√
2Bh

0 0 my√
2
√

Bh+mx
√

Bh

]T
, mx ≥ 0[

my√
2
√

Bh−mx
√

Bh
0 0

√
Bh−mx

√
Bh√

2Bh

]T
, mx < 0

(15)
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Finally, a single quaternion representing both attitude and heading is the product of
the two quaternions qattd and qhdg, as shown in Equation (16).

q = qatt ⊗ qhdg (16)

2.2. Attitude and Heading Computation from Gyroscope Reading

The gyroscope measures the rate of orientation change about each axis of the sensor
frame. The relative orientation at the time of interest is obtained by integrating the raw
measurement data for all rotational axes. The Euler angles are updated based on the
gyroscope readings as follows:

θk = θk−1 + ωykTs

φk = φk−1 + ωxkTs

ψk = ψk−1 + ωzkTs

(17)

where ωxk, ωyk, and ωzk are the gyroscope readings of the angular rotation rate about
the X-, Y-, and Z-axes, respectively, and Ts is the sampling time. On the other hand,
the quaternion parameter time update equations based on gyroscope readings are also
formulated as follows. From the quaternion identity,

(p⊗ q)∗ = q∗ ⊗ p∗ (18)

The time derivative of quaternion is

d(q∗ ⊗ q)
dt

= q̇∗ ⊗ q∗ + q∗ ⊗ q̇ = 0 (19)

It follows that
q∗ ⊗ q̇ = −(q̇∗ ⊗ q) = −(q∗ ⊗ q̇)∗ (20)

This means that q∗ ⊗ q̇ is a pure quaternion (i.e., it is equal to the negative of its
conjugate; therefore, its real part is zero). Thus, we take a pure quaternion Ω and write:

q∗ ⊗ q̇ = Ω =

[
0
Ω

]
(21)

Left multiplication by q yields the differential equation

q̇ = q⊗Ω =
1
2

q⊗ω (22)

Converting Equation (22) to discrete time with sample time ∆T and taking the first
order approximation of its Taylor series expansion yields Equation (23)

qk =
(

I4x4 +
1
2 ΩkTs

)
qk−1 (23)

where

Ωk =
1
2

[
0 −ωT

ω −[ωx]

]
=

1
2


0 −ωx −ωy −ωz

ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0

, [ωx] =

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0


and

ω =
[
ωx ωy ωz

]T



Sensors 2021, 21, 5475 7 of 27

3. Attitude and Heading Estimation with EKF-Based Sensor Fusion

As discussed in Section 2, Euler’s and quaternion parameters are used to express
attitudes and heading. The Euler representation of angular rotation is quite intuitive to use
but the quaternion representation is generally used in UAV applications. This is because 3D
rotation expression with quaternion numbers does not cause gimbal lock problem [19], and
conversely, the 3D rotation expression with Euler angles is susceptible to the gimbal lock
problem. As a result, a quaternion-based approach for attitude and heading estimation
was preferred for this study.

In Section 2, the direct computation of attitude and heading from the gyroscope,
accelerometer, and magnetometer data is presented. However, the results that were based
on gyroscope measurements accumulated errors over each calculation, leading to more
severe drift over time. On the other hand, the values that were based on the accelerometer
and magnetometer readings were also distorted by noise signals but were not affected by
drift over time. Both of these methods have their drawbacks, but when used together, they
can correct one another. Therefore, it is essential to predict the attitude and heading with
the gyroscope in advance and to use the accelerometer and magnetometer as correctors to
obtain reliable results using the EKF algorithm.

3.1. EKF Formulation

The EKF is an iterative prediction/correction approach for estimating the state of a
discrete time process or measurement. Before moving on to the algorithm, it is important
to select either the quaternion or Euler representation method. In this work, the quaternion-
based approach is preferred because this approach does not introduce the gimbal lock
problem. The EKF process relies on a state prediction model that mathematically defines
how the state variable xk is related to the input variable and time, and an observation
model that establishes a mathematical connection between the measured values zk and the
predicted states xk.

{
xk = Fkxk−1 + ωk

zk = Hkxk + νk
, where


xk: state at sampling time k
zk: measurement at sampling time k ( or observation)
Fk: state transition model applied to xk−1

Hk: observation model

(24)

The EKF algorithm follows three major sequential steps: initialization, prediction
and correction.

3.1.1. Initialization

At this stage, the state values are set to their original orientations, which in most cases
start at zero rotation about all axes, described with quaternions q =

[
1 0 0 0

]T .

q̂0 =
[
1 0 0 0

]T

P0 = E
[
(q0 − q̂0)(q0 − q̂0)

T] (25)

The measurement noise covariance matrix (R) and the process noise covariance matrix
(Q) can be time-varying or time-invariant. The heading estimation is highly sensitive
to magnetic noise. Therefore, in this study, simulations and practical experiments were
conducted to determine how to minimize magnetic disturbances in heading estimation
by using a disturbance-dependent measurement covariance matrix; this topic is further
discussed in Section 3.3. The initializations of Q and R are given in Equation (26)

R = σν Imxm, Q = σω Inxn (26)

where I, n, and m are the identity matrix, number of states, and number of measurements,
respectively. σν and σω are the variance of the measurement noise and the variance of the
process noise, respectively.
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3.1.2. Prediction

A mathematical model of quaternion-based orientation estimation is presented in
Section 2.2. Based on previous sensor states, the sample period, and current gyroscope
measurements, the prediction equation helps to calculate the sensor’s attitude and heading.
The outcome of this stage is then used in the EKF fusion process. The model given in
Equation (23) is eventually reformulated in the standard state-space model form, as shown
in Equation (27).

q−k = Fkqk−1, where, Fk =


1 −ωx

Ts
2 −ωy

Ts
2 −ωz

Ts
2

ωx
Ts
2 1 ωz

Ts
2 −ωy

Ts
2

ωy
Ts
2 −ωz

Ts
2 1 ωx

Ts
2

ωz
Ts
2 ωy

Ts
2 −ωx

Ts
2 1

 (27)

Additionally, the prediction error covariance is

P−k = FkPk−1FT
k + Q (28)

The observation model, as shown in Equations (9) and (11) for the accelerometer and
magnetometer, respectively, can easily be defined in a combination form.

zk =



ax
ay
az
mx
my
mz

 =



2(q1q3 − q0q2)
2(q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3
(q2

0 + q2
1 − q2

2 − q2
3)Hx + 2(q1q2 + q0q3)Hy + 2(q1q3 − q0q2)Hz

2(q1q2 − q0q3)Hx + (q2
0 − q2

1 + q2
2 − q2

3)Hy + 2(q2q3 + q0q1)Hz
2(q1q3 + q0q2)Hx + 2(q2q3 − q0q1)Hy + (q2

0 − q2
1 − q2

2 + q2
3)Hz

 = h(q−k ) (29)

Then,

Hk =
∂h
∂q

∣∣∣
q=qk−1

=



−2q2 2q3 −2q0
2q1 2q0 2q3
2q0 −2q1 −2q2

2q0Hx + 2q3Hy − 2q2Hz 2q1Hx + 2q2Hy + 2q3Hz −2q2Hx + 2q1Hy − 2q0Hz
−2q3Hx + 2q0Hy + 2q1Hz 2q2Hx − 2q1Hy + 2q0Hz 2q1Hx + 2q2Hy + 2q3Hz
2q2Hx − 2q1Hy + 2q0Hz 2q3Hx − 2q0Hy − 2q1Hz 2q0Hx + 2q3Hy − 2q2Hz

2q1
2q2
2q3

−2q3Hx + 2q0Hy + 2q1Hz
−2q0Hx − 2q3Hy + 2q2Hz
2q1Hx + 2q2Hy + 2q3Hz



(30)

3.1.3. Correction

This is the last step of every single iteration of the EKF. The states and covariance
matrix were corrected using the Kalman gain.

K = P−k HT
k (HkP−k HT

k + R)−1

q+k = q−k + K(zk − h(q−k ))

P+
k = (I − KHk)P−k

(31)



Sensors 2021, 21, 5475 9 of 27

3.2. Double Quaternion Approach

In this study, a double quaternion configuration was proposed to represent the attitude
and heading separately. A single quaternion consists of four parameters
(q = [q0 q1 q2 q3]

T). However, the proposed double quaternion is, set to have eight
parameters that are represented as (q =

[
q0 q1 q2 q3 qw qx qy qz

]T); the first four
parameters are assigned to represent attitude, while the last four are assigned to represent
heading information.

3.2.1. Double Quaternion-Based EKF (DQEKF) Formulation

Many studies dealing with quaternion-based attitude and heading estimation use
a single quaternion to denote both attitude and heading during the EKF updating pro-
cess [1,4,20]. The update process for a single quaternion value, which can be seen in
Equations (27) and (29), depends on three sensor values: gyroscope, accelerometer, and
magnetometer. The information from the gyroscope is essentially used to predict attitude
and heading, whereas the accelerometer and magnetometer are used to correct the predic-
tion. However, magnetometer readings are more susceptible to environmental disturbances
and can induce attitude errors if used for correction. Therefore, this study proposes an in-
dependent updating mechanism for attitude and heading to overcome the aforementioned
problem. The EKF is formulated such that the attitude solely depends on accelerometer
readings, whereas the heading relies on both the accelerometer as a tilt compensator and
the magnetometer as a prediction error corrector.

Prediction

Owing to the independent updates of attitude and heading, the number of states is
doubled.

qd = [q0 q1 q2 q3︸ ︷︷ ︸
qatt

qw qx qy qz︸ ︷︷ ︸
qhdg

]T (32)

where qd, qatt, and qhdg represent the double quaternion, quaternion corresponding to
attitude, and quaternion corresponding to heading, respectively. Following the increase
in the number of states, the prediction and observation models also change. The state
transition matrix in Equation (27) is modified to

Fk =



1 −ωx
Ts
2 −ωy

Ts
2 −ωz

Ts
2 0 0 0 0

ωx
Ts
2 1 w2

Ts
2 −ωy

Ts
2 0 0 0 0

ωy
Ts
2 −ωz

Ts
2 1 ωx

Ts
2 0 0 0 0

ωz
Ts
2 ωy

Ts
2 −ωx

Ts
2 1 0 0 0 0

0 0 0 0 1 −ωx
Ts
2 −ωy

Ts
2 −ωz

Ts
2

0 0 0 0 ωx
Ts
2 1 w2

Ts
2 −ωy

Ts
2

0 0 0 0 ωy
Ts
2 −ωz

Ts
2 1 ωx

Ts
2

0 0 0 0 ωz
Ts
2 ωy

Ts
2 −ωx

Ts
2 1


(33)

and the observation model in Equation (30) expands to Equation (34)

Hk =

 H1
a 03x4

03x4 H2
a

03x4 Hm

 (34)

where
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H1
a =

−2q2 2q3 −2q0 2q1
2q1 2q0 2q3 2q2
2q0 −2q1 −2q2 2q3

, H2
a =

−2qy 2qz −2qw 2qx
2qx 2qw 2qz 2qy
2qw −2qx −2qy 2qz

and

Hm =

 2qwHx + 2qzHy − 2qyHz 2qx Hx + 2qyHy + 2qzHz −2qy Hx + 2qx Hy − 2qwHz
−2qz Hx + 2qw Hy + 2qx Hz 2qyHx − 2qx Hy + 2qw Hz 2qx Hx + 2qy Hy + 2qzHz
2qyHx − 2qx Hy + 2qw Hz 2qzHx − 2qwHy − 2qx Hz 2qw Hx + 2qz Hy − 2qy Hz

−2qzHx + 2qwHy + 2qx Hz
−2qwHx − 2qzHy + 2qyHz
2qx Hx + 2qy Hy + 2qz Hz


The measurement and processing of noise covariance matrices obviously changes

according to the current number of measurement and state variables.

3.2.2. Observability Analysis

An observability analysis approach was applied to test the impact of faulty readings
of the magnetometer sensor on attitude estimation. The observability of the quaternion pa-
rameters by the magnetometer sensor was analyzed by considering the observation model
and state model given in Equations (14) and (27), respectively. For a single quaternion
representation, when all states (quaternion parameters) are observable, interference with
the magnetometer readings affects the attitude and heading output. However, in the case
of a double quaternion, when the first four states (attitude quaternion parameters) are un-
observable by the magnetometer sensor, no interference in the magnetometer measurement
can affect the attitude outputs. Equations (37) and (38) show the observability analysis
for both scenarios. The observability of nonlinear system is commonly addressed by a Lie
derivative approach [21,22]. For a generic nonlinear system represented in state space as

Σ :

{
ẋ(t) = f (x(t), u(t)) = f 0(x(t)) + ∑l

i=1 f i(x(t))ui(t)
y = h(x),

(35)

where x = [x1, x2, . . . , xn]T , u = [u1, u2, . . . , ul ]
T and y = [y1, y2, . . . , ym]T represent state,

input and output measurements, respectively. The Lie derivative is

Li
f (h) =

{
h; for i = 0
∂

∂x [L
i−1
f (h)] f ; for i=1,2,3,..., n

(36)

For a single quaternion representation case, by using the system state model in
Equation (27) and the magnetometer sensor state observation model in Equation (14),
the observability matrix can be derived, as presented in Equation (37). Detailed derivations
for Equations (37) and (38) are provided in Appendix A.

O1 =
[

∂
∂q

(
L0

f (h)
)

∂
∂q

(
L1

f (h)
)

∂
∂q

(
L2

f (h)
)

∂
∂q

(
L3

f (h)
)]T

(37)

Similarly, for the double quaternion representation case, based on the state model
from Equation (33) and the observation model from Equation (14), the observability matrix
is formulated as Equation (38).

O2 =
[

∂
∂qd

(
L0

f (h)
)

∂
∂qd

(
L1

f (h)
)

∂
∂qd

(
L2

f (h)
)

∂
∂qd

(
L3

f (h)
)

∂
∂qd

(
L4

f (h)
)

∂
∂qd

(
L5

f (h)
)

∂
∂qd

(
L6

f (h)
)

∂
∂qd

(
L7

f (h)
)]T (38)

The observability matrix O1 is full rank, implying that all single quaternion parameters
are observable so that attitude values are susceptible to magnetic interference. The rank
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of O2 is four, which is less than the number of states by half. Therefore, four of the
quaternion parameters out of eight are unobservable, which is a good indication that
magnetic interference-immune quaternion parameters exist.

3.3. Magnetic Disturbance Tolerant Heading Estimation Mechanism

A magnetic sensor measures the strength of Earth’s magnetic field in the sensor frame.
Earth’s magnetic field varies across geographic locations. According to the literature,
the approximate magnetic field of the Earth can be referenced from the world magnetic
model [23]. Therefore, identifying the magnitude of the magnetic disturbance at a spe-
cific location qualifies mathematically. In this subsection, a mathematical methods for
identifying magnetic disturbances and for taking appropriate action will be discussed.

Assume that Hk = [Hx Hy Hz]T represents the Earth’s magnetic field at a given
time and at geographic location P = [lat lon alt]T . Then, the magnetic disturbance
distribution at a given location is estimated as

dm =
k

∑
k−n

(|Hk| − |Bk|)2 (39)

where |H|, |B|, and n represent the magnitude of the Earth’s magnetic field at a location,
the magnitude of the magnetic field measured by the magnetometer, and the number of
samples considered, respectively. The number of samples was decided based on how fast
the system should respond and how long the disturbance should last, as considered by the
system.

Based on the error calculated in Equation (39), a rule was created to determine the
error condition for switching to different values of the measurement error covariance. The
covariance value of the measurement error indicates the degree to which the system relies
on the gyroscope prediction or magnetometer data to estimate the heading [24]. If a severe
magnetic disturbance is detected, a big measurement error covariance value is selected to
prevent the effect of erroneous sensor data on the estimate. The magnetic field disturbance
detector compares Earth’s magnetic field measured by a magnetometer sensor with Earth’s
magnetic field referred from a lookup table that contains Earth’s magnetic field based
on location and projected onto the sensor frame. The proposed algorithm for magnetic
disturbance detection and rejection, as well as the decoupling of attitude calculation from
heading, is shown in Figure 2.

Gyroscope

Accelerometer

Magnetometer

Earth’s magnetic
field lookup table Hx

Hy
Hz



DLPF

ωx
ωy
ωz



DLPF

ax
ay
az



DLPF

mx
my
mz



Magnetic field
disturbance
detection

Attitude
prediction

 qatt

qhdg



EKF

Measurement noise
covariance tuning

To Euler
qatt

[
θ
φ

]

To Euler
qhdg ψ

Figure 2. Attitude and heading estimation algorithm block diagram.
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4. Hardware Design

For functional verification of the proposed algorithm, an embedded inertial naviga-
tion system (INS) prototype was developed in this study. The prototype was equipped
with an ICM-20948 9-axis MEMS TDK InvenSense MotionTrackingTM device, and a Texas
Instruments TMS320F28377S MCU for the proposed EKF algorithm computation and
communication with peripheral devices.

Tables 1 and 2 summarize the specifications of the ICM-20948 and TMS320F28377S
MCUs, respectively.

Table 1. Specification of the ICM-20948.

Parameter Gyroscope Accelerometer Magnetometer

Range ±2000 dps ±16 g ±4900 µT

Output Data Rate 1.125 kHz 1.125 kHz 100 Hz

Spectral noise density 0.015 dps/
√

Hz 230 µg/
√

Hz

Interface I2C: 400 kHz, SPI : 7 MHz

ADC word length 16 bits

Table 2. Specification of the TMS320F28377S CPU.

Parameter Value Parameter Value

Total Processing (MIPS) 400 MHz ADC resolution 16-bit, 12-bit

Communication peripherals
2-CAN, 4-UART, 3-high
speed SPI (up to 50 MHz), I2C

Flash memory 1024 KB

Mechanical dimension 256 mm2 16 × 16

The PCB of the prototype included a sensor board with sensor chips and a main
board with an MCU, a power source, and external interface connectors. Figure 3 shows the
configuration of the INS prototype.

Figure 3. Block diagram of the INS prototype.

The sensor board and the main board are connected by a flexible flat cable and are
designed to be physically secured with double-sided tape made of a soft ethylene propylene
diene monomer (EPDM) sponge material. This is to minimize the effect of vibration due
to the actuator operation of the INS mounted targets, such as drones and ground robots.
Figure 4 shows the designed assembly configuration of the inner PCB parts and the outer
cover of the prototype, and Figure 5 shows the actual sensor board and main board.
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Figure 4. Configuration of the INS prototype.

Figure 5. Picture of developed INS module.

5. Computer Simulation and Experimentation
5.1. Sensor Data Generation

Simulated IMU sensor data were generated to compare the performance of com-
plementary, gradient descent proposed by Madgwick, EKF, and the proposed double
quaternion-based EKF algorithms in estimating attitude and heading, and in eliminating
environmental magnetic disturbance. MATLAB software was used to generate the IMU
sensor data using the parameters listed in Table 3.

Table 3. Specification of simulated sensors.

Bias Noise Density

Gyroscope [0.0428 −0.0327 0.0209] rad/s [0.0100 0.0100 0.0100] rad/s/
√

Hz
Accelerometer [−0.0599 −0.0042 −0.1780] m/s2 [0.0730 0.0730 0.0730] m/s2/

√
Hz

Magnetometer [0.1000 0.1000 0.1000] µT [0.0600 0.0600 0.0900] µT/
√

Hz
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Figure 6 shows the IMU sensor data generated using MATLAB code by considering
the specification given in Table 3. In Figure 7, an emulated external magnetic interference
signal that was applied at the ninth second and lasted until the 18th second is shown.
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Figure 6. Accelerometer, gyroscope and magnetometer simulated data.
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Figure 7. Magnetometer simulated data after injecting external disturbance.

5.2. Experimental Setup

In order to carry out a validation experiment for the proposed algorithm, an experi-
mental environment was set up as shown in Figure 8 . A six D.O.F motion table, computer,
spirit level, and permanent magnetic bar were used for the experiment. The usage of these
tools is described briefly as follows.
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• Motion table: This machine was used to rotate the sensor around the X-, Y-, and
Z-axes to an orientation angle required by the computer software. The software was
developed as real-time harware-in-the-loop simulation (HILS) testing tool for small
UAVs [25]. The specifications of the motion table are given in Table 4;

• Computer: A command is sent to the motion table from the computer. The raw data
measured by the sensors and the estimated orientation angles are also logged into a
file on the computer;

• Permanent magnet: We used a permanent magnetic bar to create a magnetic distur-
bance in the environment.

Table 4. Specification of motion table.

Specification Excursion Vel. Acc.

Roll ±30° 45°/s 1520°/s2

Pitch ±30° 45°/s 1520°/s2

Yaw ±60° 45°/s 5146°/s2

Figure 8. Experimental setup.

In the experiment, the magnetometer was carefully calibrated, as the workplace area
was filled with different tools that could contain metallic materials that would create
magnetic interference and affect the output of the experiment. Then, the motion table
was operated to rotate around the X-, Y-, and Z-axes in sequence for specific times, under
conditions with no significant magnetic disturbance, and in a magnetically disturbed
environment by placing a magnetic bar in close vicinity to the motion table. Experiments
were also carried out when the motion table was not moving to compare performance
under static and dynamic conditions. Simultaneously, all raw measurement data from the
sensors and estimated rotation trajectories were recorded.
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6. Results
6.1. Simulation Result

In this simulation experiment, comparisons of the complementary [26], gradient
descent [27], EKF, and DQEKF algorithms were carried out. Two major concerns were
examined while comparing the performances of the aforementioned algorithms. The first
issue deals on the decoupling of attitude and heading estimation in order to eliminate
the effect of magnetometer reading on attitude (roll and pitch) computation. Second, an
environmental magnetic disturbance rejection system was considered for comparison. The
performance of each algorithm in response to the injected magnetic disturbance shown in
Figure 9 and Table 5.

Figure 9. Attitude and heading estimation by complementary, gradient descent, EKF, and double quaternion-based EKF for
three cases (Case 1: no magnetic disturbance (MD OFF), Case 2: with magnetic disturbance and no magnetic disturbance
rejection (MD ON, MDR OFF), Case 3: with both magnetic disturbance and magnetic disturbance rejection enabled (MD
ON, MDR ON)).
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Table 5. RMS error of complementary, gradient descent, EKF, and double quaternion-based EKF algorithms comparison for
attitude and heading estimation. MD and MDR stand for magnetic disturbance and magnetic disturbance rejection, respectively.

Algorithm Euler Angles
RMS of Euler Angles Estimation Error in Degree
for Three Different Magnetic Disturbance Cases

MD OFF MD ON, MDR OFF MD ON, MDR ON

Complementary
(α = 0.9)

Roll 1.4085 1.4085

Pitch 1.3413 1.3413

Yaw 1.8295 27.9305

Gradient descent
(β = 0.9)

Roll 0.6410 2.4940

Pitch 0.5521 0.9618

Yaw 1.8648 28.0109

EKF
Roll 0.5796 4.9787 0.6267

Pitch 0.8518 5.5300 0.7289

Yaw 0.9646 26.6888 1.6488

DQEKF
(Proposed)

Roll 0.5933 0.5933 0.5933

Pitch 0.6579 0.6579 0.6579

Yaw 1.0279 26.4927 1.2574

6.2. Experimental Result

The validation procedure was carried out using the experimental setup specified in
Section 5.2. A high-precision motion table was utilized to rotate the developed sensor
around the inertial axes and serve as a ground truth reference. The performance of the built
AHRS with the proposed algorithm and other commonly used algorithms was carefully
examined in this experiment, for avoiding the influence of environmental magnetic dis-
turbance on attitude and heading estimation. A permanent magnet was utilized to create
an artificial magnetic disturbance in the surroundings. Figures 10 and 11 show the raw
sensors measurement data and the Euler angles estimated by the respective algorithms:
complementary, gradient descent, EKF, and DQEK, respectively, while the INS sensor was
stationary and magnetic disturbance was injected for small period of times. Furthermore,
the same experimental scenario followed while the INS sensor was rotating by the motion
table and the recorded results depicted in Figures 12 and 13. Table 6 presents the empirical
data analysis of the algorithms.
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Table 6. RMS error of comparison of complementary, gradient descent, EKF and double quaternion-based EKF algorithms
for attitude and heading estimation. MD and MDR stand for magnetic disturbance and magnetic disturbance rejection,
respectively.

Algorithm
Euler Angles
Error RMS

(degree)

Attitude and Heading Estimation When the Magnetic
Disturbance Rejection (MDR) was ON or OFF

Static Condition Dynamic Condition

MDR OFF MDR ON MDR OFF MDR ON

Complementary
(α = 0.9)

Roll 0.6446 0.8521

Pitch 0.0765 0.4586

Yaw 34.4490 12.9683

Gradient Descent
(β = 0.9)

Roll 3.2341 1.9019

Pitch 4.0225 3.2809

Yaw 33.2160 19.5133

EKF
Roll 0.8057 0.1525 0.8405 0.8347

Pitch 0.5548 0.0878 0.3769 0.3757

Yaw 38.6632 1.7721 12.3855 1.3562

DQEKF
(Proposed)

Roll 0.1523 0.1523 0.8044 0.8044

Pitch 0.0867 0.0867 0.3738 0.3738

Yaw 38.6684 1.7415 12.3545 0.9892
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Figure 10. The gyroscope, accelerometer and magnetometer measurement data when INS sensor was stationary, and
disturbed by temporary magnetic noise signal for a short time.
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Figure 11. Euler angle estimation output by complementary, gradient descent, EKF and DQEKF algorithms when temporary
magnetic field was introduced in the environment for a short period of time and the INS sensor was stationary.
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Figure 12. The gyroscope, accelerometer and magnetometer measurement data when the INS sensor was rotated by the
motion table and disturbed by temporary magnetic noise signal for a short time.
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Figure 13. Euler angle estimation output by complementary, gradient descent, EKF and DQEKF algorithms when temporary
magnetic field was introduced in the environment for a short period of time, and the INS sensor was rotating by the motion table.

7. Discussion

This study covered all of the processes needed to create a fully working AHRS sensor,
including algorithm development and simulation validation, as well as sensor hardware de-
sign, manufacturing, and experimental verification. Furthermore, the common algorithms
complementary, gradient descent, and EKF were examined with the identical magnetic
disturbance conditions as the double quaternion-based EKF to confirm the required perfor-
mance by the developed algorithm and hardware.

7.1. Simulation Results Discussion

As seen in the simulation results demonstrated in Figure 9 and Table 5, complemen-
tary and DQEKF outperformed the other algorithms in terms of excluding the effect of
magnetometer measurement on attitude estimation during magnetic disturbance condition,
whereas gradient descent and EKF attitude estimation were directly affected by magne-
tometer noise because the attitude computation was not independent of the magnetometer
readings. According to the analysis of observability of attitude by the magnetometer sensor
discussed in Section 3.2.2, when employing the single quaternion-based EKF method, all
four quaternion parameters were completely observable. This means that any changes in
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the magnetometer sensor data could have an effect on the attitude values. Therefore, the
low performance of EKF and gradient descent approaches, during magnetic disturbance,
was attributed to the coupling of magnetometer data and attitude in their mathematical
models. Though complementary filter attitude estimation was unaffected by magnetic
noise, its accuracy was lower than that of DQEKF since DQEKF was based on an efficient
and advanced EKF algorithm.

Regarding heading estimation, DQEKF performed better than EKF in rejecting the
magnetic disturbance, even if the same magnetic disturbance rejection algorithm was
used in both cases. This is because the error in attitude due to disturbance also affects
the heading. As the magnetic disturbance algorithm developed in this study could not
be directly applied to the complementary and gradient descent algorithms, only the EKF
and DQEKF comparisons were performed. Overall, it can be concluded that the EKF
and DQEKF algorithms surpass the complementary and gradient descent algorithms in
terms of the accuracy and reliability of the attitude and heading estimation. DQEKF
is better than EKF in preventing the effect of magnetometer noise in both attitude and
heading estimation.

7.2. Experimental Results Discussion

The experiments were carried out for static and dynamic statuses of the INS sensor.
The results of the two experimental scenarios were consistent with one another and also
with the simulation results discussed in Section 7.1. When the INS sensor is in a stationary
state, all Euler angle values should remain in their initial states if the gyroscope biases are
completely removed by calibration. In other words, the Euler angles will drift over time
if the gyroscope sensor biases are not zero, particularly if the applied algorithm places
more reliance on the gyroscope data. In the dynamic condition, the same issue arises.
Nevertheless, corrective action based on accelerometer measurements can reduce drift in
attitude angle (roll and pitch) estimation over time. Similarly, the heading drift is expected
to be compensated using magnetometer sensor readings but the magnetometer itself is
vulnerable to magnetic noise from the environment. As a consequence, reducing heading
estimation inaccuracy is a tradeoff. Therefore, the solution strategy should be focused on
determining when gyroscope or magnetometer reading data are more relevant.

The divergence of the heading (yaw) value from the reference value in Figures 11
and 13 after the introduction of magnetic flux demonstrated that everything that happens
to the magnetometer directly affects the heading estimated output, independent of the
algorithms utilized, which included complementary, gradient descent, EKF, and DQEK.
When the magnetic disturbance rejection (MDR) technique is applied with the EKF and
DQEK algorithms, the degree to which the heading value is affected by the surrounding
magnetic flux considerably reduced for both static and dynamic conditions. In terms of
avoiding the environmental magnetic flux on heading estimated output, DQEKF surpasses
EKF. The roll and pitch estimates of the gradient descent and EKF algorithms, however, are
impacted by magnetic disturbance. The complementary and DQEKF algorithms proved to
be unaffected by magnetic disturbances in the environment for attitude estimation. Owing
to the overall accuracy, reliability, and simplicity of applying the magnetic disturbance
rejection method, DQEKF was the best among the algorithms considered in this experiment.
Generally, the severity of the magnetic flux effect on the roll and pitch depends on the
accuracy of the gyroscope. If the gyroscope sensor used is of poor quality or not properly
calibrated, magnetic disturbance will negatively affect the attitude value in addition to
heading, and DQEKF should be used to solve the problem.

8. Conclusions

In this work, two complementary methods are presented for rejecting the effect of
magnetic disturbance in determining a reliable 3-D orientation of a moving object such
as a UAV. The first method addressed the issue of attitude estimation error due to the
magnetic noise by using a double quaternion representation of an object orientation in the
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EKF algorithm process. With this method, the attitude and heading are set to update with
independent quaternion parameters, where the quaternion parameters correspond to the
attitude calculation decoupled from magnetometer readings. In the second method, the
inaccuracy of the heading under magnetic interference is reduced by an online adjustment
of the measurement error covariance matrix. The experimental tests proved that the
deviation of attitude and heading values from the ground truth better reduced with the
proposed methods than commonly used algorithms: complementary, gradient descent,
and the conventional use of EKF, during the period of magnetic disturbance. Thus, in an
environment where magnetic interference has a significant impact on the performance of
attitude and heading sensors, the suggested approaches are solutions.
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Appendix A. Observability Matrix Derivation

Single quaternion prediction model:

qk = f (q, ω) = Fkqk−1 =


q0 − 0.5 ∗ Ts(ωxq1 + ωyq2 + ωzq3)
q1 + 0.5 ∗ Ts(ωxq0 + ωzq2 −ωyq3)
q2 + 0.5 ∗ Ts(ωyq1 −ωzq2 + ωxq3)
q3 + 0.5 ∗ Ts(ωzq1 + ωyq2 −ωxq3)



Fk =
1
2


2 −ωxTs −ωyTs −ωzTs

ωxTs 2 wzTs −ωyTs
ωyTs −ωzTs 2 ωxTs
ωzTs ωyTs −ωxTs 2


q =

[
q0 q1 q2 q3

]T

(A1)

where ω is the angular rotation rate measured by the gyroscope sensor, Ts is the sample
time, and k is the time stamp.

Magnetometer observation model:

z = h(q) =

(q2
0 + q2

1 − q2
2 − q2

3)Hx + 2(q1q2 + q0q3)Hy + 2(q1q3 − q0q2)Hz
2(q1q2 − q0q3)Hx + (q2

0 − q2
1 + q2

2 − q2
3)Hy + 2(q2q3 + q0q1)Hz

2(q1q3 + q0q2)Hx + 2(q2q3 − q0q1)Hy + (q2
0 − q2

1 − q2
2 + q2

3)Hz

 (A2)

Lie derivative for single quaternion state representation (i.e., n = 4):

Li
f (h) =

{
h(q); for i = 0
∂
∂q

(
Li−1

f (h)
)

qk; for i = 1,2,3
(A3)

Then,

L0
f (h) = h(q)

L1
f (h) =

∂

∂q

(
L0

f (h)
)

qk

L2
f (h) =

∂

∂q

(
L1

f (h)
)

qk

L3
f (h) =

∂

∂q

(
L2

f (h)
)

qk

(A4)

O1 =
[

∂
∂q

(
L0

f (h)
)

∂
∂q

(
L1

f (h)
)

∂
∂q

(
L2

f (h)
)

∂
∂q

(
L3

f (h)
)]T

R1 = rank(O1)
(A5)

O1 is a 12× 4 matrix. The rank of O1 should be four for all parameters of a single quaternion
(i.e., q0, q1, q2 and q3) to be observable by the magnetometer sensor.

Double quaternion prediction model:
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qd
k = f (qd, ω) = Akqd

k−1 =



q0 − 0.5 ∗ Ts(ωxq1 + ωyq2 + ωzq3)
q1 + 0.5 ∗ Ts(ωxq0 + ωzq2 −ωyq3)
q2 + 0.5 ∗ Ts(ωyq0 −ωzq1 + ωxq3)
q3 + 0.5 ∗ Ts(ωzq0 + ωyq1 −ωxq2)
qw − 0.5 ∗ Ts(ωxqx + ωyqy + ωzqz)
qx + 0.5 ∗ Ts(ωxqw + ωzqy −ωyqz)
qy + 0.5 ∗ Ts(ωyqw −ωzqx + ωxqz)
qz + 0.5 ∗ Ts(ωzqw + ωyqx −ωxqy)


Ak =

[
Fk z4x4

z4x4 Fk

]
qd = [q0 q1 q2 q3︸ ︷︷ ︸

qatt

qw qx qy qz︸ ︷︷ ︸
qhdg

]T

(A6)

where Fk, z4×4 and qd represent the system matrices used in Equation (A1), zero matrix,
and double quaternion states, respectively.

Magnetometer observation model corresponding to heading quaternion:

z = h(qhdg) =

(q2
w + q2

x − q2
y − q2

z)Hx + 2(qxqy + qwqz)Hy + 2(qxqz − qwqy)Hz

2(qxqy − qwqz)Hx + (q2
w − q2

x + q2
y − q2

z)Hy + 2(qyqz + qwqx)Hz

2(qxqz + qwqy)Hx + 2(qyqz − qwqx)Hy + (q2
w − q2

x − q2
y + q2

z)Hz

 (A7)

Lie derivative for double quaternion state representation (i.e., q = qd, n = 8):

L0
f (h) = h(qhdg)

L1
f (h) =

∂

∂qd

(
L0

f (h)
)

qd
k

L2
f (h) =

∂

∂qd

(
L1

f (h)
)

qd
k

L3
f (h) =

∂

∂qd

(
L2

f (h)
)

qd
k

...

L7
f (h) =

∂

∂qd

(
L6

f (h)
)

qd
k

(A8)

O2 =
[

∂
∂qd

(
L0

f (h)
)

∂
∂qd

(
L1

f (h)
)

∂
∂qd

(
L2

f (h)
)

∂
∂qd

(
L3

f (h)
)

∂
∂qd

(
L4

f (h)
)

∂
∂qd

(
L5

f (h)
)

∂
∂qd

(
L6

f (h)
)

∂
∂qd

(
L7

f (h)
)]T

R2 = rank(O2)

(A9)

O2 is a 24 × 8 matrix. The rank of O2 should be eight for all parameters of the double
quaternion (i.e., q0, q1, q2, q3, qw, qx, qy and qz) to be observable by the magnetometer sensor.
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